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This paper describes the development of a high-order, matrix-free adjoint solver for
the Navier-Stokes equations discretized using the discontinuous-Galerkin method in both
spatial and temporal directions. The matrix-free framework allows the use of very high
orders of approximation accuracy (e.g.: 8th, 16th) at an affordable computational cost. Our
final goal with high-order space-time adjoints is to adaptively improve the solution-space
based on output error estimates of simulations of three-dimensional, separated flows. This
paper is a progress report on that goal: we present implementation details and verification
of our matrix-free adjoint solver in three spatial dimensions for steady and unsteady flows.
Additionally, we present an extension of a quasi-Newton approach for the adjoint solve
that offers considerable speedup. Finally, we draw a plan for future developments.

I. Introduction

The growth in computational power and algorithm development in the past few decades has granted
the science and engineering community the ability to simulate flows over complex geometries, thus making
Computational Fluid Dynamics (CFD) tools indispensable in analysis and design. Currently, one of the
pacing items limiting the utility of CFD for general problems is the prediction of unsteady turbulent flows.1–3

Reynolds-averaged Navier-Stokes (RANS) methods, which predict a time-invariant mean flowfield, struggle to
provide consistent predictions when encountering even mild separation, such as the side-of-body separation at
a wing-body junction. NASA’s Transformative Tools and Technologies project is developing both numerical
methods and physical modeling approaches to improve the prediction of separated flows. A major focus
of this effort is efficient methods for resolving the unsteady fluctuations occurring in these flows to provide
valuable engineering data of the time-accurate flow field for buffet analysis, vortex shedding, etc. This
encompasses unsteady RANS (URANS), large-eddy simulations (LES), Direct Numerical Simulation (DNS),
and hybrid LES-RANS approaches such as Detached Eddy Simulations (DES). These unsteady approaches
are inherently more expensive than traditional engineering RANS approaches, hence every effort to mitigate
this cost must be leveraged. Arguably, the most cost-effective approach to improve the efficiency of unsteady
methods is the optimal placement of the spatial and temporal degrees of freedom (DOF) using solution-
adaptive methods.

Under the steady-flow assumption, solution-adaptive methods have been demonstrated to be efficient
in reducing discretization error by spatially distributing degrees of freedom according to a scalar field –
the adaptive indicator – that assesses the importance of different regions of the domain. A robust method
for identifying all important regions in the domain is the adjoint-weighted residual which estimates the
discretization error in an output of interest (e.g.: lift and drag) and the elemental contribution to this error
yields an adaptive indicator.4 Degrees of freedom are added/removed by locally refining/coarsening (h-
adaptation) the mesh or by increasing/decreasing (p-adaptation) the scheme’s approximation order. The
combination and the choice between these options are not trivial tasks and they have been the subjects of
many research works.5–11 Other approaches that remesh12–14 the domain based on a metric field derived
from adjoint-based error estimates and anisotropy measures have also been demonstrated to be efficient in
controlling discretization error.
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A far less explored research topic is solution adaptation for accurate and efficient simulation of unsteady
flows.14–17 The limited number of research works in space-time adaptivity is partly due to algorithmic
challenges to affordably simulate large-scale unsteady flows and to the difficulty of designing and implement-
ing a robust space-time mesh adaptation strategy. Nevertheless, these challenges are worth taking as the
two-dimensional results in Ref. 17 show that adjoint-based space-time adaptation can reduce the number of
degrees of freedom by one to three orders of magnitude in comparison to uniform refinement, especially when
a high level of accuracy is required. More importantly, the authors show that certain heuristic indicators
cause the adaptive procedure to converge to the wrong output value.

In steady problems, the cost of an adjoint solution is comparable to the cost of the primal solution with
small variations depending on the implementation. The time dependence in unsteady problems reverses the
information propagation direction and the adjoint is more conveniently solved backwards in time. At each
time step, a residual linearization about the current primal state makes the cost balance between primal and
dual solutions depend highly on the implementation. One of the main contributors to the computational cost
is forming and storing the residual Jacobian. This cost is twofold, as storing the Jacobian not only requires
a large amount of memory but also hampers the computational efficiency due to memory bandwidth usage.

In this work, we avoid these issues by implementing the transpose-Jacobian action on a vector to use
the existing matrix-free Krylov infrastructure18 as the adjoint solver. This work extends our current solver
capability that has been demonstrated to achieve high orders of accuracy (larger than 8th-order) on turbulent
flows.19,20 We will use this work as a building block for our goal of output-based space-time hp-adaptation
which will allow us to perform LES at significantly lower computational cost than currently. In this paper,
we will concentrate on the adjoint solver and the adaptation mechanics will be covered in future papers. This
paper is organized as follows. In Section II, we describe the discretization followed by the primal solution
strategy presented in Section III. Section IV presents the derivation of the adjoint equation and Section V
shows results followed by conclusions in Section VI.

II. Discretization

For completeness, we briefly present the discretization of the flow equations. More details are found in
Ref. 18. The compressible Navier-Stokes equations are written in conservative form as:

q,t +∇ · (f I − fV ) = g, (1)

where (·),t denotes partial differentiation with respect to time. Here, g denotes a source term which is zero
for the cases in this paper. The conservative state vector is

q =

 ρ

ρu

ρE

 , (2)

where ρ is the density, u is the velocity vector, and E the total energy. The inviscid and viscous fluxes are
given, respectively, by:

f I =

 ρu

ρuuT + pI

ρuH

 , and fV =

 0

τ

τ · u− κT∇T

 , (3)

where p is the static pressure, H = E+ p
ρ is the total enthalpy, τ the viscous stress tensor, κT is the thermal

conductivity, T = p/ρR is the temperature, and R is the gas constant. The pressure is given by:

p = (γ − 1)
(
ρE − 1

2ρu
2
)
, (4)

where γ is the specific heat ratio. The viscous stress tensor, τ , is given by:

τ = µ
(
∇u+∇uT

)
− λ(∇ · u)I, (5)

where µ is the viscosity, and λ = 2
3µ is the bulk viscosity.
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Applying a change of variables q = q(v), where v are the entropy variables:

v =

 −
s

γ−1 + γ+1
γ−1 −

ρE
p

ρu
p

−ρp

 , (6)

we rewrite the Navier-Stokes equations as:

A0v,t + Ā∇v −∇ · ( ¯̄K∇v) = g, (7)

with symmetric A0 = q,v, Ā = f I,qA0 = f I,v and ¯̄K = fV,∇qA0 = fV,∇v.21

We proceed to discretize (7) as follows. The domain, Ω, is partitioned into non-overlapping elements, κ,
while the time is partitioned into intervals (time-slabs), In = [tn, tn+1]. Define Bh =

{
w,w|κ ∈ [P(κ× I)]5

}
,

the space-time finite-element space consisting of piece-wise polynomial functions in both space and time on
each element. We seek a solution v ∈ Bh such that the weak form:

rn(w,v) =
∑
κ

{∫
In

∫
κ

−
(
w,t · q +∇w · (f I − fV ) +wg

)
+

∫
In

∫
∂κ

w · (f̂ I · n− f̂V · n)

+

∫
κ

w(tn+1
− ) · q(tn+1

− )

}
=
∑
κ

∫
κ

w(tn+) · q(tn−), (8)

is satisfied for all w ∈ Bh. Here f̂ I · n and f̂V · n denote numerical flux functions approximating the inviscid
and viscous fluxes, respectively, while n is the outward pointing normal vector. In this work, the inviscid
flux is discretized using the method of Ismail and Roe,22 while the viscous flux is an interior penalty method.
We discretize the temporal direction in slabs, each of which having an Eqn. 8 to be solved. The slabs are
coupled via the temporal flux from the previous slab (term involving q(tn−)).

The space Bh is represented using a tensor-product basis such that, on each element, v is given by the
product of Lagrange polynomials:

v(x(ξ), t(τ)) = VijklΦijkl with Φijkl = φi(ξ1)φj(ξ2)φk(ξ3)φl(τ), (9)

where x(ξ) defines a mapping from the reference cube, ξ ⊂ [−1, 1]3, to physical space, while t(τ) is the
mapping from the reference interval [−1, 1] to the time interval [tn, tn+1]. φi are one-dimensional Lagrange
basis functions defined at Gauss-Legendre (GL) points, while Vijkl are the corresponding nodal values of
the entropy variables. The integrals in (8) are evaluated using numerical quadrature. For example:

2

∆t

∫
In

∫
κ

−
(
w,t · q +∇w · (f I − fV ))

)
'

{
−
(
τ,tw,τ · q +∇ξw · (f̃

I
− f̃

V
))
)
|J |
}
ξpξqξrτs

wpwqwrws, (10)

where ξp, ξq, ξr, τs are one-dimensional GL quadrature points, and wp, wq, wr and ws are the associated
quadrature weights. |J | denotes the Jacobian of the mapping from element reference space to physical space,

∇ξ denotes differentiation with respect to the reference coordinate ξ, while f̃
I

= ξ,xf
I and f̃

V
= ξ,xf

V

are the fluxes mapped to the local element coordinate system. In this work we use a quadrature rule with
twice as many quadrature points as nodal points in order to reduce the quadrature error (we ensure exact
integration of cubic nonlinearities) thereby improving the nonlinear stability of our scheme.23,24 Later in
the text, we will refer to this quadrature as a “de-aliased” quadrature.

The remaining integrals appearing in (8) are evaluated in a similar manner, which may be described as
a sequence of three steps:

1. Evaluate the state (v) and gradient (∇ξv) at the quadrature points.

2. Evaluate the source (g) and fluxes (f̃
I

and f̃
V

) at the quadrature points.
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3. Multiply the source and fluxes with the basis functions (w) or gradients (∇ξw).

A key requirement for efficiency at high polynomial order is the evaluation of the first and third steps using
the sum-factorization approach,24,25 which allows the multiplication of the basis functions to be performed as
a sequence of one-dimensional operations. This results in a residual evaluation cost which scales as O(Nd+1)
for each space-time element where N is the solution order and d is the number of spatial-temporal dimensions
(for unsteady 3D simulations d = 4). For a fixed number of spatial-temporal degrees of freedom (i.e. fixed
DOF = Nd) the residual evaluation scales linearly with the solution order. However for moderate solution
orders, N = 4− 16, the increased operation count with solution order may be offset by the use of optimized
numerical kernels24 via SIMD vectorization. As vector length increases in future processor architectures, the
aforementioned solution order range can further increase.

III. Primal Solution Strategy

Given the choice of basis functions and quadrature rule, Equation (8) represents a globally coupled system
of nonlinear equations which need to be solved for each time-slab. For large three-dimensional simulations
the cost of storing the linearization for a single step of an implicit scheme may be prohibitively expensive.
Using a space-time formulation, this storage cost is further scaled by the order of the basis used in the
temporal direction. In general, all degrees of freedom within an element are coupled, leading to a storage
cost which scales as O(Nd) for a fixed number of degrees of freedom. We overcome the memory requirement
limitation by using a matrix-free Newton-Krylov method.

A preconditioned GMRES method is used as Krylov solver, which does not require the explicit storage of
the Jacobian matrix,26 instead, it requires only the application of the linearization to each search direction,
i.e. we need to compute the linearized residual in the search direction. In this work, the linearized residual
is computed directly. As with the residual evaluation, the terms in the evaluation of the linearized residual
in a search direction, s, are computed as a sequence of three steps:

1. Evaluate the state (v), gradient (∇ξv), linearized state (s) and linearized gradient (∇ξs) at the quadra-
ture points.

2. Evaluate the linearized source gLin = ∂g
∂vs+ ∂g

∂∇ξv∇ξs and linearized fluxes (f̃
Lin

= ∂f̃
∂vs+ ∂f̃

∂∇ξv∇ξs)
at the quadrature points.

3. Multiply of the linearized source and fluxes with the basis functions (w) or gradients (∇ξw).

This approach is more expensive than the finite-difference approach often used in Jacobian-free method,27

however it is insensitive to a step-size parameter, provides the exact linearization, and it is used to compute
the solution of adjoint (dual) problems. Note that steps 1 and 3 are transpose of each other, hence, only the
flux Jacobians (step 2) need to be transposed for the adjoint residual operator.

The sum factorization approach is used in the application of steps 1 and 3, such that the cost of applying
the linearization scales as O(N) for a fixed number of space-time degrees of freedom. We note that with
increasing solution order this is more efficient than storing the linearization and computing the linearized
residual as a matrix-vector product whose cost scales as O(Nd) (even if there was no cost associated with
forming the linearization).

Furthermore, this approach allows us to use different quadrature rules for computing the linearized
and nonlinear residuals. In particular, we often use a lower order, or collocated, quadrature rule in the
evaluation of the linearized residuals of our Newton-Krylov scheme. The nonlinear residual, however, is
evaluated with the de-aliased quadrature metioned in Section II. The use of a collocated quadrature for the
linearized residual introduces a linearization error hence our Newton method may be viewed as inexact. The
preconditioner used for the primal solve is a matrix-free extension of the diagonalized Alternating-Direction-
Implicit (ADI) method applied to our space-time discontinuous Galerkin discretization.28

In certain conditions, Newton’s method can converge to a local minimum of the residual norm. We
address this problem using a diagonal regularization approach analogous to pseudo-transient continuation
for steady problems.29
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IV. Discrete Adjoint Equation

Consider an output J (α,V), where the state V satisfies the discrete residual equations R(α,V) = 0 for a
parameter set α. We seek variations of the output that are tangent to the manifold R(α,V) = 0. Assuming
the output functional is at least C1-continuous on V and α and the residual equations admit a single solution
for a given α, output variations must be balanced by corresponding residual variations. We can relate these
variations by forming the output Lagrangian,

L(α,V,Ψ) = J (α,V) + ΨTR(α,V) (11)

and force its stationarity (or tangency to R(α,V) = 0) for arbitrary δV and δα:

δL((α),V,Ψ) =

(
∂J
∂V

T
∣∣∣∣∣
α

+ ΨT ∂R
∂V

∣∣∣∣
α

)
︸ ︷︷ ︸

adjoint equation

δV +

(
∂J
∂α

T
∣∣∣∣∣
V

+ ΨT ∂R
∂α

∣∣∣∣
V

)
︸ ︷︷ ︸

sensitivity equation

δα = 0. (12)

We solve the adjoint equation for Ψ and use its value to compute the output sensitivity with respect to
α via the sensitivity equation. A generalization of the sensitivity equation can be derived in variation form
to yield adjoint-weighted error estimates.4 An integral part of solving the adjoint equation is the transposed
action of the residual Jacobian onto a search direction. We perform this operation in a matrix-free manner
to prevent the computational cost from scaling super-linearly with solution order.

IV.A. Matrix-free Adjoint Operator

As with the primal solve, we use a GMRES method, which does not require the explicit storage of the
Jacobian matrix – only the application of the adjoint operator to each search direction. As with the primal
solve, the adjoint residual is computed algebraically exact – apart from possible quadrature differences. The
terms in the evaluation of the adjoint residual in a search direction, a, are again computed in a sequence of
three steps:

1. Evaluate the state (v), gradient (∇ξv), adjoint state (a) and adjoint gradient (∇ξa) at the quadrature
points.

2. Evaluate the adjoint source (gAdj = ∂g
∂v

T
a + ∂f̃

∂v

T
∇ξa) and fluxes (f̃

Adj
= ∂g

∂∇ξv
T
a + ∂f̃

∂∇ξv

T
∇ξa) at

the quadrature points.

3. Multiply the adjoint sources and fluxes with the basis functions (w) or gradients (∇ξw).

We note that steps 1 and 3 are identical to those for the primal problem, while step 2 involves simply the
transpose of the operations computed in the linearized residual.

The Jacobians of the fluxes at the quadrature points from Section III are not explicitly constructed in
our implementation. Instead, we express the Fréchet derivative as a sequence of algebraic operations and the
implementation of their transpose follows an approach similar to the reverse-mode automatic differentiation.

Suppose we compute g = g(v) : R2 7→ R2 using the sequence of scalar steps:

c = c(v) (13)

d = d(v, c) (14)

g1 = g1(c, d) (15)

g2 = g2(c, d) (16)

Then the linearized residual, glin = glin(v, s) : R2 ×R2 7→ R2, in a search direction s is computed using the
chain rule:

clin = ∂c
∂v1

s1 + ∂c
∂v2

s2

dlin = ∂d
∂v1

s1 + ∂d
∂v2

s2 + ∂d
∂c c

lin

glin1 = ∂g1
∂c c

lin + ∂g1
∂d d

lin

glin2 = ∂g2
∂c c

lin + ∂g2
∂d d

lin

(17)
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The adjoint residual, gadj = gadj(v, z) : R2×R2 7→ R2, in a search direction z is simply the reverse operations
swaping inputs with outputs:

dadj =
∂g2
∂d

z2

cadj =
∂g2
∂c

z2

dadj + =
∂g1
∂d

z1

cadj + =
∂g1
∂c

z1

cadj + =
∂d

∂c
dadj

gadj2 =
∂d

∂v2
dadj

gadj1 =
∂d

∂v1
dadj

gadj2 + =
∂c

∂v2
cadj

gadj1 + =
∂c

∂v1
cadj.

(18)

Note that the operations in (18) are equivalent to gadj = ∂glin

∂v

T
z.

Through optimized kernels, we can further improve the linear scaling provided by the sum factorization
approach and achieve approximately constant cost for the linearized residual evaluation.18 Figure 1 compares
the forward and transpose Fréchet derivatives for various approximation orders. Note that the CPU time
spent per degree-of-freedom increases slowly in the range of 2nd to 10th approximation order in space and
time. The transpose action of residual Jacobian is slightly more expensive than the forward application. We
expect this offset to be reduced or eliminated by further optimizing the transpose operations.
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Figure 1: Computational cost per degree of freedom of the forward and transpose Fréchet derivatives –
Computed on one processor core of Intel Xeon E5-2680v2.

The preconditioner for the adjoint system uses a diagonalized Alternating Direction Implicit (ADI) al-
gorithm that we have previously developed for the primal problem problem.28 The preconditioner for the
primal problem involves the solution of one-dimensional scalar advection-diffusion systems along each refer-
ence coordinate direction (three spatial and one temporal) of every element, with a transformation to/from
characteristics variables prior to each solve. Similarly, the preconditioner for the adjoint problem involves the
solution of a one-dimensional scalar advection-diffusion adjoint problems in each coordinate direction. For
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the adjoint problem, we perform the directional solves in the opposite direction (i.e. τ ,ξ3,ξ2,ξ1 as opposed
to ξ1,ξ2,ξ3,τ) to ensure that the adjoint preconditioner is equivalent to the transpose of the preconditioner
for the primal problem. We note that the formation of the scalar-problems, the transformations to/from
characteristics variables, and the application of the inverse of the scalar systems are identical for primal and
dual solves only the order of their application are changed. As in the primal case, the preconditioner requires
minimal storage, and since the preconditioned operator for the adjoint problem is simply the transpose of
operator the primal problem we expect similar performance, enabling us to efficiently compute high-order
adjoint solutions.

IV.B. Discrete Space-Time Adjoint System

We now explain how we solve the discrete space-time adjoint system. Consider an unsteady simulation
composed of two time slabs. The corresponding space-time discrete residual operator can be compactly
expressed as follows: [

R(·) 0

−G(·) R(·)

](
Vn

Vn+1

)
︸ ︷︷ ︸

R(V)

=

[
G(Vn−1)

0

]
, (19)

where the superscripts denote the time-slabs and V are the discrete state unknowns which represent the
entropy variables in space and time according to Eqn. 9. R(·) and G(·) are the discrete nonlinear operators
respectively corresponding to the left and righthand side of Eq. 8. It is convenient to solve the nonlinear
system in Eqn. 19 by marching forward starting from a state Vn−1.

The adjoint system for Eqn. 19 is written as: ∂R
∂V

T
∣∣∣
Vn

− ∂G
∂V

T
∣∣∣
Vn+1

0 ∂R
∂V

T
∣∣∣
Vn+1

 · [ ψn

ψn+1

]
= −∂J

∂V

([
Vn

Vn+1

])
+

[
0

∂G
∂V

T
∣∣∣
Vn+2

ψn+2

]
, (20)

where the righthand side represents the output linearization with respect to the full spacetime state. Note
that it is convenient, but not strictly necessary, to solve Eqn. 20 backwards starting from the adjoint state
for the last slab (ψn+1) with an adjoint final condition ψn+2 = 0. Analogously to the primal problem, the

adjoint of the temporal flux (∂G∂V
T

) couples the adjoint states between time slabs.
In each step of the adjoint solve, the corresponding primal states are required in order to compute the

linearizations of R and G. In this work, we store the primal states for each timeslab in the file-system
during the forward solve and read them when computing the adjoint. In a parallel computing environment,
writing files to a network file system is not efficient and storing the states can take as long as, or longer
than, solving for them. Hence, it is important to reduce the number of file writes via checkpointing and/or
to have processes writing the previous slab to file while others are solving for the next slab. Currently,
we do not solve and write concurrently as the focus of this paper is the implementation and verification of
the matrix-free adjoint infrastructure. Implementation of concurrent solve-and-write and investigation of
adaptive checkpointing strategies30 are ongoing work.

IV.C. Adjoint Operator with Collocated Quadrature

As noted above, a globalized quasi-Newton approach is used to solve the primal equations, where the approx-
imation to Newton’s method comes in the use of a collocated quadrature in the Fréchet derivative operator.
The motivation for such an approximation is because the collocated quadrature has f4q fewer points, where
fq is the ratio of quadrature-to-nodal points of the de-aliased rule in each of the four directions – three
spatial and one temporal. Here, fq = 2, hence the potential speedup is 16. The actual nonlinear speedup
is less than that because the slower rate of convergence when the linearization is only approximate. In this
paper, we seek to obtain a speedup similar to the nonlinear case but for the adjoint problem which can me
cast as a linear system of the form:

Q(x) = A · x− b = 0, (21)

where x is the adjoint state, A corresponds to the adjoint operator with de-aliased quadrature and b represents
the adjoint righthand side computed with the same quadrature as A. The quasi-Newton procedure for Eqn.
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21 is then:

Ã · (xk+1 − xk) = −Q(xk), (22)

where Ã represents the adjoint operator with the collocated quadrature. We solve Eqn. 22 for the update,
∆xk = (xk+1 − xk), using GMRES starting from a guess x0 = 0. Assuming that we solve Eqn. 22 exactly
at each GMRES call, the adjoint residual norm behaves as,

||Q(xk)|| = ||(I−A · Ã−1)k · b||, (23)

where I is the identity matrix. Naturally, this procedure can diverge if Ã is a poor approximation to A.
However, from our experience with the primal problem,19 we found that the use of a collocated quadrature
for the residual Jacobian works well and it indeed offers an overall speed-up over the use of a de-aliased
quadrature. The case chosen to quantify the speedup is Window 1 shown in Figure 6(a), discussed later in
the text.
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(a) Primal residual history versus GMRES iterations.

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 1 2 3 4 5 6

U
n
s
t
e
a
d
y
 
p
r
i
m
a
l
 
r
e
s
i
d
u
a
l
 
n
o
r
m

CPU time

De-aliased
Collocated

(b) Primal residual history versus time.
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(c) Adjoint residual history versus GMRES iterations.
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(d) Adjoint residual history versus time.

Figure 2: Representative residual histories for collocated and de-aliased quadrature in the Fréchet derivative.

Figure 2 shows the primal and adjoint residual convergence for a representative space-time slab for the
de-aliased and collocated quadratures. The spikes in the primal residual plots (Figures 2(a) and 2(b)) are
due to the nonlinearity of the problem, that is, between outer iterations the residual get reset to the actual
nonlinear residual. As expected, in the adjoint case (Figures 2(c) and 2(d)), these spikes are only observed
in the collocation curve as the transpose Fréchet derivative is approximate.

Note that collocation in the Fréchet derivative takes roughly 20% more GMRES iterations but, because
these iterations are much faster, the overall speedup is approximately a factor of 5 (Figure 2(d)). This
speedup is roughly the same for both primal and dual solves. Surprisingly, the adjoint solve is ∼ 30% more
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expensive than the primal (Table 1) for both collocation and de-aliasing, in spite of the adjoint problem
being linear. Part of the reason for this difference is explained by Figure 1 where the transpose is ∼ 20%
more expensive than the forward Fréchet derivative. The remainder of the reason for the difference is unclear
and we intend to investigate this further.

Table 1: Speed-up of Fréchet derivative quadratures for case in Section V.B: NACA0012, M∞ = 0.5,
Re = 5× 103, α = 10.0◦, Window 1 (60 cores of Intel Xeon E5-2680v2).

Quadrature Normalized Total Primal Solve Time Normalized Total Adj. Solve Time

De-aliased 1.00 (82.59 sec.) 1.00 (107.62 sec.)

Collocated 0.21 0.22

V. Results

We consider two flow conditions over the NACA0012 airfoil, one steady and one unsteady. Although the
flows are two-dimensional, we compute them in a three-dimensional, cylindrical domain, as shown in Figure
3, where the two domain faces with z-normals are periodic. The mesh (Fig. 3) consists of 128 elements
constructed via a tensor-product of 7th-order polynomials approximating the geometry in each direction.
For both flows, the primal and adjoint residuals tolerances are 10−10. The reference length is Cref = 1 and
velocity scale is the freestream Mach number, M∞.

Figure 3: Mesh used for the steady and unsteady runs.

V.A. Steady Viscous Flow

The first case we consider is steady flow at M∞ = 0.5, α = 1◦ and Re = 5000. We compute the primal and
adjoint solutions with 2nd, 4th, and 6th spatial approximation orders. Our output of interest is the force acting
on the airfoil projected in the x-direction. We use the sensitivity equation in variational form to verify if the
adjoint-weighted residual yields the true output variation for small parameter perturbations. The second
column of Table 2 lists the “true” output perturbation computed as the difference of the output computed
with a perturbed solution, V(α+δα) = V | R(V, α+δα) = 0, and a baseline solution, V(α) = V | R(V, α) = 0.
The third column of Table 2 lists the adjoint-weigthed residual computed via a discrete inner product between
the adjoint solution, Ψ, and the perturbed residual operator, both evaluated with the baseline solution. Note
that adjoint-weighted perturbation is only a linear approximation to the true output perturbation and the
two columns should only perfectly agree for an infinitesimal parameter perturbation. Nonetheless, the fourth
column verifies that the output perturbation computed via the adjoint-weighted residual agrees well with
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the direct output difference. Note that we perturb the angle of attack by 1% (δα = 0.01◦) and the error in
the computed perturbations is within 1%.

Table 2: Steady adjoint sensitivity verification for NACA0012, M∞ = 0.5, Re = 5 × 103, α = 1.0◦, and
δα = 0.01◦.

Approx. Order δJ = J (V(α+ δα))− J (V(α)) δJadj = ΨTR(V(α), α+ δα) (δJ − δJadj)/δJ
2 −2.2392e− 06 −2.2283e− 06 0.49%

4 −4.3091e− 07 −4.2989e− 07 0.24%

6 5.2794e− 07 5.2622e− 07 0.33%

Figure 4 shows the 6th-order primal and x-force-adjoint fields for x-momentum. The non-white regions
in Figure 4(b) are regions where residuals in the x-momentum conservation equation will affect the x-force.
These results are similar to adjoint results obtained previously by other researchers.

(a) 6th-order primal x-momentum. (b) 6th-order x-force-adjoint x-momentum.

Figure 4: NACA0012, M∞ = 0.5, Re = 5× 103, α = 1.0◦: primal and x-force adjoint solutions.

V.B. Unsteady Viscous Flow

The second case we consider is unsteady flow at M∞ = 0.5, Re = 5 × 103 and α = 10.0◦ with 4th-order
approximation in space and time. We initialize the flow with freestream conditions and it undergoes an
initial transient marked in red in Figure 5(a). We use the flow state (Figure 7(a)) at the end of this period
as the initial condition for the sensitivity analyses.

After the initial transient, the flow is expected to exhibit regular vortex sheding at a frequency (f)
corresponding to Strouhal number of St = fL

|u∞| ∼ 0.2 based on the body’s cross-section length scale (L).

In fact, the Strouhal number computed with the peak frequency shown in Figure 5(b) is St = 0.163 using a
reference length, L = Cref sin(α).

The output of interest for this case is the integral over time of the x-force. We consider four time window
sizes (Figure 6(a)) for the force integration. Note that the average x-force for windows 3 and 4 are within
1% of each other. Figure 6(b) shows the force difference in between the perturbed solution and the baseline
solution for Window 4.

Krakos31 Heaviside-weighted integration windows introduce error when one is interested in computing
the infinite-time average of an outputs. We emphasize that the purpose of this study is only to assess the
correctness of the adjoint sensitivities, hence Heaviside-weighted integration windows are adequate. If we

10 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Ja

nu
ar

y 
11

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

08
33

 



0

0.005

0.01

0.015

0.02

0 10 20 30 40 50 60

X
F
o
r
c
e
(
1
0
.
0

°
)

Simulation time

Sensitivity analysisInitial transient

(a) Complete time history of x-force signal.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

E
n
e
r
g
y

Frequency (1/(Time Scale))

(b) Spectrum of x-force in the sensitivity analysis portion
of the signal.

Figure 5: Time history and energy spectrum of the x-force signal.

were interested in the true sensitivity of the mean x-force for infinite time, smooth weighting functions should
be used with finite windows.
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Figure 6: Time history of the x-force in the sensitivity analysis time frame.

Similarly to the steady case, we compute the output for each of the time windows with the baseline solution
and their corresponding adjoints. Then we compute the output perturbation via the adjoint-weighted residual
and via the direct difference from the perturbed solution. The results of the sensitivity analyses are shown
in Table 3. Note that the computed perturbations are within 1% of each other for all windows.

Table 3: Unsteady adjoint sensitivity verification for NACA0012, M∞ = 0.5, Re = 5× 103, α = 10.0◦.

Window width δJ = J (V(α+ δα))− J (V(α)) δJadj = ΨTR(V(α), α+ δα) δα (δJ − δJadj)/δJ
6.40 −7.90941e− 08 −7.93761e− 08 0.010◦ −0.36%
12.80 −2.21309e− 06 −2.21259e− 06 0.005◦ 0.02%

19.20 −2.06548e− 07 −2.05836e− 07 0.001◦ 0.35%

25.60 −3.67374e− 07 −3.65131e− 07 0.001◦ 0.61%
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Figures 7(b) and 7(d) show the x-momentum adjoint solution for Window 4 at two times instances. The
non-white regions of the domain are areas where we need to approximate well the primal solution so we
obtain an accurate output calculation. The complexity of the adjoint field emphasizes the importance of
adaptive methods in unsteady flow problems.

(a) Primal x-momentum at t = 30.4. (b) X-force-adjoint x-momentum at t = 30.4.

(c) Primal x-momentum at t = 43.6. (d) X-force-adjoint x-momentum at t = 43.6.

Figure 7: 4th-order primal and x-force adjoint solution for Window 4.

VI. Conclusions

Our end goal with adjoints is to adaptively allocate degrees of freedom in space and time to efficiently and
accurately simulate separated flows. Here, we presented the first step towards that goal: the implementation
of an efficient adjoint solver. The novelty of this work is the ability to efficiently compute space-time adjoints
for high orders of approximation accuracy. This was achieved by a matrix-free approach which allows us to
scale up the approximation order in both space and time.

For the transpose Fréchet derivative, we use most of the framework layed out for the forward problem
including the matrix-free ADI preconditioner which is simply transposed to be applied in the adjoint problem.
This procedure works well for the problems tested. Furthermore, the quasi-Newton aproach for the adjoint
problem presented here provides virtually the same speed up as a similar procedure for the forward problem.

The next steps for our framework are to implement a procedure for concurrenty writing the primal and
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adjoint states’ slabs while solving, investigate the reason why the adjoint problem is more expensive than
the primal in the unsteady case, and to develop an efficient output-based adaptive procedure for unsteady
problems.

Finally, as we move on to complex applications, we expect to encounter chaotic problems where the
adjoint procedure as-is breaks down. Nevertheless, the framework presented here is a building block for
approaches like the Least-Squares Shadowing of Wang et al.32
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